Saucy_Basic

Ahmed Jazzar¹ Bassam Jaber² Prof. Karem Sakallah³

¹University of Jordan

²Birzeit University

³University of Michigan

2013

э

(人間) トイヨト イヨト

Outline

- Background and problem definition
 - Background
 - Applications
 - I/O
- 2 Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References
- 3 Results
 - OutComes
 - Tests
 - Lessons Learned
 - Lessons Learned
- 5 Thanks

-∢∃>

Background

Outline

Background and problem definition 1

- Background
- Applications
- I/O
- - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

- OutComes
- Tests
- - I essons I earned

A B F A B F

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

- 4 週 ト - 4 三 ト - 4 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

< 回 ト < 三 ト < 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

< 回 ト < 三 ト < 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

- 4 週 ト - 4 三 ト - 4 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

< 回 ト < 三 ト < 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.

- 4 回 ト - 4 回 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.
 - Number of possible symmetries are n! , n is the number of vertices. So in the previous examples we have 3! Possible symmetries.

< 回 ト < 三 ト < 三 ト

- Graph Symmetries
 - Graph Symmetry is a permutation of some vertices in a graph that leaves the graph unchanged.
 - Number of possible symmetries are n! , n is the number of vertices. So in the previous examples we have 3! Possible symmetries.
 - Our problem is to find the permutations which leaves the graph unchanged, from a given graph with n vertices and number of partitions(colors) of its vertices.

くほと くほと くほと

Outline

1 Background and problem definition

- Background
- Applications
- I/O
- 2 Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

3 Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- Thanks

A B F A B F

Background and problem definition Applications

• Graph Symmetries can be used in different graph applications:

- Modeling of chemical compounds.
- Representing migration path or movement between regions.
- modeling transport networks.
- logistic optimization.
- Symmetry Breaking.

- 4 週 ト - 4 三 ト - 4 三 ト

I/0

Outline

Background and problem definition

- Background
- Applications
- I/O
- Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

3 Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- **Thanks**

A B A A B A

Background and problem definition I/O

• The Input of the program is a text file with the following structure:

n e c v2 v3 vc-1 List of edges

- 4 3 6 4 3 6

Background and problem definition I/O

• The Input of the program is a text file with the following structure:

Background and problem definition I/O

- The Input of the program is a text file
- The Output is a list of vertices permutations that leaves the graph unchanged, symmetries number, dot file contains the graph in dot language, and a text file contains some statistics of the graph.

The Approach

Outline

Background and problem definition

- Background
- Applications
- I/O

2 Approach used

- The Approach
- Challenges and obstacles
- Division of work
- programming language
- References

3 Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- Thanks

A B A A B A

Approach used The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure

- 4 同 6 4 日 6 4 日 6

The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure

The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure
 - Implementing the OP.

The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure
 - Implementing the OP.
- Partition Refinement

- 4 同 6 4 日 6 4 日 6

The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure
 - Implementing the OP.
- Partition Refinement

The Approach

- Input Parsing
 - Reading input file
 - Implementing the graph structure
 - Implementing the OP.
- Partition Refinement
- Basic Search Tree

Outline

Background and problem definition

- Background
- Applications
- I/O

2 Approach used

• The Approach

• Challenges and obstacles

- Division of work
- programming language
- References

3 Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- Thanks

A B A A B A

- Choosing an appropriate data structure.
- Coding a non-time consumer code.

A (10) A (10)

Division of work

Outline

Background and problem definition

- Background
- Applications
- I/O

2 Approach used

- The Approach
- Challenges and obstacles
- Division of work
- programming language
- References

B Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- Thanks

A B F A B F

Approach used Division of work

- Before dividing the problem, we understand it.
- Each one of us take a part of the problem and solve it individually.
- After finishing our tasks we combine the works each to other and check the final result in order to send it to our supervisor for his feedback.

Outline

Background and problem definition

- Background
- Applications
- I/O

2 Approach used

- The Approach
- Challenges and obstacles
- Division of work
- programming language
- References

B Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- Thanks

A B A A B A

- Saucy_Basic programmed in C language.
- Its also developed in Code::Blocks at windows, and Ubuntu environments

- 4 回 ト - 4 回 ト

Outline

Background and problem definition

- Background
- Applications
- I/O

Approach used

- The Approach
- Challenges and obstacles
- Division of work
- programming language

References

Results

- OutComes
- Tests
- 4 Lessons Learned
 - Lessons Learned
- **Thanks**

A B A A B A

< 🗗 🕨

Approach used References

- We return to the project description every time we feel that we dont understand the problem completely.
- If the project description didnt give us what we want, we refer to the materials given by our supervisor.
- Our Supervisor is the most important reference we refer for.

A B M A B M

OutComes

Outline

- Background and problem definition
 - Background
 - Applications
 - I/O
- 2 Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

3 Results

- OutComes
- Tests
- Lessons Learned
 - Lessons Learned
- Thanks

A B A A B A

Results OutComes

Output Screen

2013 34 / 46

Results

OutComes

Results OutComes

Out Files

<ロ> (日) (日) (日) (日) (日)

Ahmed Jazzar, Bassam Jaber Prof. Karem

Saucy_Basic

Outline

- 1 Background and problem definition
 - Background
 - Applications
 - I/O
- 2 Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

Results

- OutComes
- Tests
- Lessons Lea
 - Lessons Learned
- Thanks

A B A A B A

• Before we deliver every part of our project, the test was being by comparing the results with the correct results provided.

(本間) (本語) (本語)

- Before we deliver every part of our project, the test was being by comparing the results with the correct results provided.
- These data(input, and its correct output) are provided in Project Description, and some slides given by our supervisor.

.

Results Tests

- Before we deliver every part of our project, the test was being by comparing the results with the correct results provided.
- These data(input, and its correct output) are provided in Project Description, and some slides given by our supervisor.
- After that the final testing has been done by prof. Karems team in the University of Michigan, and he notified us about every small issue in our deliverables.

• • = • • = •

Outline

- 1 Background and problem definition
 - Background
 - Applications
 - I/O
- 2 Approach used
 - The Approach
 - Challenges and obstacles
 - Division of work
 - programming language
 - References

Results

- OutComes
- Tests

Lessons Learned

Lessons Learned

Thanks

Ahmed Jazzar, Bassam Jaber Prof. Karem

A B A A B A

Main things

- Organizing My time.
- Working in a team.
- Learn myself.
- Overcome the problems.

A B A A B A

I wish that I knew before the project

• Some practice with teams.

Ahmed Jazzar, Bassam Jaber Prof. Karem

< ロ > < 同 > < 三 > < 三

Lessons Learned If I do it again

• Complete it quickly to start doing Symmetry Breaking.

Ahmed Jazzar, Bassam Jaber Prof. Karem

2013 43 / 46

(日) (同) (三) (三)

Its easy, if you believe in yourselves!

Ahmed Jazzar, Bassam Jaber Prof. Karem

イロト イヨト イヨト イヨト

Thank you!

▲□▶ ▲圖▶ ▲温▶ ▲温≯